3.446 \(\int \frac {x^6}{\sqrt {1+x^3}} \, dx\)

Optimal. Leaf size=136 \[ -\frac {16}{55} \sqrt {x^3+1} x+\frac {2}{11} \sqrt {x^3+1} x^4+\frac {32 \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{55 \sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}} \]

[Out]

-16/55*x*(x^3+1)^(1/2)+2/11*x^4*(x^3+1)^(1/2)+32/165*(1+x)*EllipticF((1+x-3^(1/2))/(1+x+3^(1/2)),I*3^(1/2)+2*I
)*(1/2*6^(1/2)+1/2*2^(1/2))*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)*3^(3/4)/(x^3+1)^(1/2)/((1+x)/(1+x+3^(1/2))^2)^(1
/2)

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 136, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {321, 218} \[ \frac {2}{11} \sqrt {x^3+1} x^4-\frac {16}{55} \sqrt {x^3+1} x+\frac {32 \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{55 \sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}} \]

Antiderivative was successfully verified.

[In]

Int[x^6/Sqrt[1 + x^3],x]

[Out]

(-16*x*Sqrt[1 + x^3])/55 + (2*x^4*Sqrt[1 + x^3])/11 + (32*Sqrt[2 + Sqrt[3]]*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sq
rt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(55*3^(1/4)*Sqrt[(1 + x)
/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3])

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rubi steps

\begin {align*} \int \frac {x^6}{\sqrt {1+x^3}} \, dx &=\frac {2}{11} x^4 \sqrt {1+x^3}-\frac {8}{11} \int \frac {x^3}{\sqrt {1+x^3}} \, dx\\ &=-\frac {16}{55} x \sqrt {1+x^3}+\frac {2}{11} x^4 \sqrt {1+x^3}+\frac {16}{55} \int \frac {1}{\sqrt {1+x^3}} \, dx\\ &=-\frac {16}{55} x \sqrt {1+x^3}+\frac {2}{11} x^4 \sqrt {1+x^3}+\frac {32 \sqrt {2+\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{55 \sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 40, normalized size = 0.29 \[ \frac {2}{55} x \left (8 \, _2F_1\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};-x^3\right )+\sqrt {x^3+1} \left (5 x^3-8\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[x^6/Sqrt[1 + x^3],x]

[Out]

(2*x*(Sqrt[1 + x^3]*(-8 + 5*x^3) + 8*Hypergeometric2F1[1/3, 1/2, 4/3, -x^3]))/55

________________________________________________________________________________________

fricas [F]  time = 0.94, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {x^{6}}{\sqrt {x^{3} + 1}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(x^3+1)^(1/2),x, algorithm="fricas")

[Out]

integral(x^6/sqrt(x^3 + 1), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{6}}{\sqrt {x^{3} + 1}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(x^3+1)^(1/2),x, algorithm="giac")

[Out]

integrate(x^6/sqrt(x^3 + 1), x)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 139, normalized size = 1.02 \[ \frac {2 \sqrt {x^{3}+1}\, x^{4}}{11}-\frac {16 \sqrt {x^{3}+1}\, x}{55}+\frac {32 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \EllipticF \left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{55 \sqrt {x^{3}+1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^6/(x^3+1)^(1/2),x)

[Out]

2/11*x^4*(x^3+1)^(1/2)-16/55*x*(x^3+1)^(1/2)+32/55*(3/2-1/2*I*3^(1/2))*((x+1)/(3/2-1/2*I*3^(1/2)))^(1/2)*((x-1
/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)/(x^3+1)^(1/2)
*EllipticF(((x+1)/(3/2-1/2*I*3^(1/2)))^(1/2),((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{6}}{\sqrt {x^{3} + 1}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(x^3+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^6/sqrt(x^3 + 1), x)

________________________________________________________________________________________

mupad [B]  time = 0.98, size = 179, normalized size = 1.32 \[ \frac {2\,x^4\,\sqrt {x^3+1}}{11}-\frac {16\,x\,\sqrt {x^3+1}}{55}+\frac {32\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {\frac {x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {\frac {1}{2}-x+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{55\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^6/(x^3 + 1)^(1/2),x)

[Out]

(2*x^4*(x^3 + 1)^(1/2))/11 - (16*x*(x^3 + 1)^(1/2))/55 + (32*((3^(1/2)*1i)/2 + 3/2)*((x + (3^(1/2)*1i)/2 - 1/2
)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(((3^(1/2)*1i)/2 - x + 1/2)/((3^(1/2)*1
i)/2 + 3/2))^(1/2)*ellipticF(asin(((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1
i)/2 - 3/2)))/(55*(x^3 - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) - ((3^(1/2)*1i)/2 - 1/2)*((3^(1
/2)*1i)/2 + 1/2))^(1/2))

________________________________________________________________________________________

sympy [A]  time = 2.11, size = 29, normalized size = 0.21 \[ \frac {x^{7} \Gamma \left (\frac {7}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {7}{3} \\ \frac {10}{3} \end {matrix}\middle | {x^{3} e^{i \pi }} \right )}}{3 \Gamma \left (\frac {10}{3}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**6/(x**3+1)**(1/2),x)

[Out]

x**7*gamma(7/3)*hyper((1/2, 7/3), (10/3,), x**3*exp_polar(I*pi))/(3*gamma(10/3))

________________________________________________________________________________________